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Outline

I Choosing predictors for a regression model

I Missing data

I Repeated/longitudinal measurements



Recurring Theme

I ”Essentially all models are wrong, but some are useful”
(George E. P. Box)

I I would add that whichever wrong model you end up using in
your analysis, there are many others that you could have used
– your model is not particularly special and you should take
care not to overinterpret it.



Building a regression model

I Harrell, Lee, Mark (1996)

I Sullivan, Massaro, D’Agostino (2004)

I Steyerberg et al. (2010)



Typical Setting for Model Building

I Long-term survival data on adults age 70+ (n ≈ 1000, e.g.).

I Have maybe P = 50 baseline, admission, discharge
characteristics potentially predicting survival

I Goal: build a reasonably parsimonious (p = 10 or p = 15
predictors), clinically practical and sensible model that has
good discrimination and calibration

I Move from statistical model to something simple and clinically
useful (make easy to calculate 5 year survival probabilities or
median life expectancy for given individual)



Statistical models for risk prediction

I Logistic regression (or other binary regression)

I Cox regression (or other time-to-event models)

I Multinomial regression (for multi-state outcomes)



Predictions

I Key idea: don’t just look at (odds/hazard) ratios for the
predictors

I Instead focus on predicted probabilities from the fitted models

I For logistic regression get predicted probability of event for
given characteristics

I For Cox regression, same but at specific time points



Choosing predictors

I Many possibilities all with pros and cons; combinable
Frankenstein’s monster-style

I Theoretical guidance/DAG
I Existing risk model or index (incremental value of your shiny

new predictor)
I Practicality/Simplicity/Cost of obtaining predictors
I Bivariate screening
I Forward/Backward/Stepwise selection
I ”Best” subset methods



Automatic subset selection

I Many sources have criticized stepwise model selection:
I Standard errors of coefficients artificially small
I Coefficient estimates biased away from zero
I R2 biased upward
I Performs poorly in presence of multicollinearity

I Best subset selection usually viewed as even worse in all of
these senses than stepwise

I Ronan Conroy: “I would no more let an automatic routine
select my model than I would let some best-fit procedure pack
my suitcase”.



A Slightly Different View

I All of these things true (to some extent), but I think there is
more important point

I Stepwise selection only shows one model and does not output
comparisons to other potential models

I Best subsets regression gives a huge amount of useful
information for comparing models, and in practice, a large
number of models of reasonable parsimony are statistically
nearly indistinguishable

I It is tremendously valuable to clinicians to view a lot of
similarly performing prognostic models to choose ones that
are most practically applied

I All the other criticisms can be addressed with bootstrapping



Best Subsets Selection

I Computationally infeasible to fit all 2P possible subset models

I But for each of p = 1, 2, 3, ...,P − 1 it is blazingly fast (using
both branch and bound and properties of score test) to find
the best (or best k) models according to score statistic
(similar to log-likelihood)

I This gives a list of k(P − 1) models most of which are good in
some sense

I Typical finding (Miao et al., 2014) is that dozens of models
will all have same c-statistic and may be quite different in
interpretation/simplicity/etc.



Best Subsets 1



Best Subsets 2



Best Subsets 3



Assessing fit: discrimination

I Discrimination demonstrations:
I C-statistic for binary regression
I Harrell’s c-statistic for time-to-event models
I Ad hoc variants on c-statistic for multi-state outcome models

(e.g. collapse outcomes into dichotomous versions and use
binary regression methods)

I Graphically/Tabularly want to show large differences in
predicted outcomes



Harrell’s c statistic

I Generalization of logistic regression c-statistic to Cox model

I Denominator is all pairs of “evaluable” subjects where one
known to have had the event before the other (so two cases,
either both had event or one with event and other censored
after that time)

I Numerator is number of denominator pairs where earlier event
time has shorter predicted survival (“concordant”)

I Harrell’s c is proportion of evaluable pairs which are
concordant in predicted and actual survival

I Does not work well with heavy censoring; other alternatives
(e.g. Gönen and Heller, 2005)



Incremental value

I Typically improvement in c-statistic very small with your shiny
new predictor (e.g. c=0.83 new model vs. c=0.82 old model)

I Sometimes reclassification indices provide better insight into
incremental value (NRI and IDI)



Assessing fit: calibration

I Calibration demonstrations:
I Binary regression: show that predicted event rates and

observed event rates match up (graphically use calibration
plot, numerically use Hosmer-Lemeshow test maybe)

I Time-to-event models: look at fixed time points (e.g. 5 year
survival) and use binary regression methods

I Multi-state models: show that predicted event rates and
observed event rates match up



Calibration plot (Steyerberg, 2010)



Table Format (Mehta, 2011)



Discrimination Plot (Steyerberg, 2010)



Simplex discrimination (Barnes, 2013)



Validation

I Internal validation (in same data set): can either do random
or purposeful split sample.

I I am not a fan of single random split sample (nor is Harrell,
1996) which attempts to measure overfitting but confounds it
with statistical variability

I Multiple random split sample preferable (e.g. cross-validation
or bootstrapping)

I Internal purposeful split sample gets at validity of model in
subgroups (demographic, geographical, temporal, etc.)

I External validation carries more weight



Overfitting

I “Over-optimism” has two components

I 1. whatever procedure was used to select a good model was
almost certainly driven by data at hand

I 2. the coefficients for that model are optimized to provide the
best fit to the data at hand

I When assessing the model performance in a new data set, we
will almost always have degradation in the model performance
measure

I With a single split sample, you can’t separate random
variability from systematic overfitting

I Can address with repeated split sampling (e.g. cross-validation
or bootstrapping)



Implementation

I Crucial aspect of prognostic modeling: turn statistical model
into something simple, clinically useful

I Can do point scoring or keep predictions from actual model

I Point scoring super useful pre-computer age (add up points;
look up score)

I Original model no big deal now with tablet apps (tap on risk
factors; get predictions instantly)

I That said, point score models still very popular



Interesting Directions (with Sei Lee and Alex Smith)

I Many, many models have nearly identical c-statistics

I Have interface asking for risk factors to be input

I Fill in as many as have – give prediction using appropriate
model for the non-missing ones (if acceptable level of
discrimination)

I Also looking into model fit indices taking into account
time-collection cost



Handling Missing Data

I White, Royston, Wood (2011)

I Royston (2004)

I Little and Rubin (2002)



Common Setting for Missing Data

I Have a large number of potential predictors in a regression
analysis

I Regression software will drop cases that have any missing data

I Many of the predictors are missing in the data set

I Even if small percentage of missing for any particular predictor
might have only a handful of subjects with no missing data for
any predictors



Imputation of Missing Data

I Various procedures to fill in the missing data so that these
subjects are not dropped from the analysis have been used for
past 40 years

I Suppose want to regress blood pressure on weight, height,
gender, etc, but that some weights are missing in the data set

I One idea is to fill in the mean weight for all missing weights

I Slightly better idea is to fill in the mean weight for all those
with same height and gender



Multiple Imputation

I Problem is that the fill-in is uncertain.

I Key idea: fill in a random draw from the set of all weights of
those with same height and gender and do so a number (M)
of times. This is called Multiple Imputation (MI)

I Can then do the regression in each of these M complete data
sets

I Combine the M sets of regression coefficients using Rubin’s
rules (Little and Rubin, 2002; Carlin et al., 2008)



Rubin’s Rules

I Estimate of a parameter is the average of the parameter
estimates from each imputed data set

I Standard error of a parameter combines the within imputation
SE and between imputation SD



MI in software and in practice

I Twenty years ago, MI was a nice idea in theory

I Now MI is easily available in SAS, Stata, and R, for example

I First widely available algorithm was NORM (Schafer, 1997).
Assumes multivariate normal distribution for all quantities of
interest. Variants allow some relaxation of this. Backbone of
Proc MI in SAS

I Specially modified version of NORM used to do the official
multiple imputations for NHANES III (Schafer et al., 1996);
other government data have official MIs (e.g. Schenker et al.,
2006)



NHANES III imputation

(from the official documentation of NHANES III-MI
“NH3MI.DOC”)

One key feature of the imputation models is that they are based

upon an assumption of multivariate nomality; that is, they assume

that the variables to be imputed are (individually and jointly)

normally distributed within demographic subgroups defined by age,

sex, and race/ethnicity. Some variables that consist of discrete

categories (e.g. self-reported health status, which takes values

from 1 = excellent to 5 = poor) were modeled and imputed as if they

were normally distributed, and the continuous imputed values were

rounded off to the nearest category. Other variables whose

distributions were skewed were transformed by standard power

functions such as the logarithm, square root, or reciprocal square

root; modeling and imputation were carried out on the transformed

data, and after imputation they were transformed back to the

original scale....



Simple example in NHANES

. mi set mlong

. mi register imputed kstones sbp dbp male age smoke maxwt

. mi misstable patterns, frequency

Missing-value patterns

(1 means complete)

| Pattern

Frequency | 1 2 3 4 5

------------+------------------

17,751 | 1 1 1 1 1

|

954 | 1 1 1 0 0

618 | 1 1 0 1 1

464 | 1 0 1 1 1

62 | 1 0 1 0 0

57 | 1 1 0 0 0

42 | 0 1 0 1 1

29 | 1 0 0 1 1

22 | 0 1 0 0 0

11 | 1 0 0 0 0

8 | 0 1 1 1 1

6 | 0 0 0 0 0

3 | 0 0 0 1 1

2 | 0 1 1 0 0

------------+------------------

20,029 |

Variables are (1) smoke (2) maxwt (3) age (4) dbp (5) sbp



Complete cases regression

Lose almost 12% of the data set.

logistic kstones sbp dbp male age smoke maxwt

Logistic regression Number of obs = 17751

LR chi2(6) = 346.65

Prob > chi2 = 0.0000

Log likelihood = -3170.0128 Pseudo R2 = 0.0518

------------------------------------------------------------------------------

kstones | Odds Ratio Std. Err. z P>|z| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

sbp | .9998493 .0020883 -0.07 0.942 .9957646 1.003951

dbp | 1.008443 .0031585 2.68 0.007 1.002272 1.014653

male | 1.474334 .1137626 5.03 0.000 1.267405 1.715048

age | 1.028355 .0023434 12.27 0.000 1.023773 1.032959

smoke | .8614465 .069716 -1.84 0.065 .7350916 1.009521

maxwt | 1.005423 .0008747 6.22 0.000 1.00371 1.007139

------------------------------------------------------------------------------



Imputing data

mi impute chained (regress) sbp (regress) dbp (logit) male (regress)

age (logit) smoke (regress) maxwt, add(10)

note: variable male contains no soft missing (.) values; imputing nothing

Conditional models:

smoke: logit smoke i.male maxwt age sbp dbp

maxwt: regress maxwt i.male i.smoke age sbp dbp

age: regress age i.male i.smoke maxwt sbp dbp

sbp: regress sbp i.male i.smoke maxwt age dbp

dbp: regress dbp i.male i.smoke maxwt age sbp

Performing chained iterations ...

Multivariate imputation Imputations = 10

Chained equations added = 10

Imputed: m=1 through m=10 updated = 0

Initialization: monotone Iterations = 100

burn-in = 10



MI Logistic Regression (MC error)

. mi estimate, mcerror: logistic kstones sbp dbp male age smoke maxwt

Logistic regression Number of obs = 20029

Largest FMI = 0.1300

------------------------------------------------------------------------------

kstones | Coef. Std. Err. t P>|t| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

sbp | .0013643 .0020714 0.66 0.510 -.0027044 .005433

| .0002225 .0000516 0.10 0.066 .0002038 .0002842

|

dbp | .0059833 .0030078 1.99 0.047 .0000822 .0118843

| .0002665 .0000477 0.08 0.009 .0002537 .0003112

|

male | .4154024 .0730054 5.69 0.000 .2723141 .5584907

| .0012741 .0000642 0.02 0.000 .0012587 .0013017

|

age | .0270061 .0022828 11.83 0.000 .0225226 .0314895

| .0002419 .0000342 0.20 0.000 .0002485 .0002558

|

smoke | -.1498978 .0771103 -1.94 0.052 -.301032 .0012364

| .0018016 .0001164 0.02 0.003 .0017323 .0018961

|

maxwt | .0050521 .0008346 6.05 0.000 .0034163 .0066878

| .0000302 2.72e-06 0.04 0.000 .0000302 .0000311

|

_cons | -6.207185 .2778718 -22.34 0.000 -6.752047 -5.662324

| .0200949 .0046794 0.43 0.000 .0157049 .0271742

------------------------------------------------------------------------------

Note: values displayed beneath estimates are Monte Carlo error estimates.



MI Logistic Regression (look at FMIs)

. mi estimate, vartable nocitable

Multiple-imputation estimates Imputations = 10

Logistic regression

Variance information

------------------------------------------------------------------------------

| Imputation variance Relative

| Within Between Total RVI FMI efficiency

-------------+----------------------------------------------------------------

sbp | 3.7e-06 5.0e-07 4.3e-06 .145351 .130013 .987166

dbp | 8.3e-06 7.1e-07 9.0e-06 .094518 .087866 .99129

male | .005312 .000016 .00533 .003362 .003353 .999665

age | 4.6e-06 5.9e-07 5.2e-06 .140889 .126446 .987513

smoke | .00591 .000032 .005946 .006041 .006012 .999399

maxwt | 6.9e-07 9.1e-09 7.0e-07 .014592 .014428 .998559

_cons | .072771 .004038 .077213 .061039 .05822 .994212

------------------------------------------------------------------------------



Alphabet Soup

I Missing completely at random (MCAR): probability of missing
does not depend on observed or on missing data
(e.g. recording instrument fails 10% of the time)

I Missing at random (MAR): probability of missing depends
only on observed data (e.g. men who smoke more likely to be
missing blood pressure)

I Missing not at random (MNAR): missingness probability
depends on missing values (e.g. when maximum weight was
very high more likely not to report it)



Assumptions and Methods

I Dropping subjects with any missing data (listwise deletion)
may lead to biased estimates of parameters (unless MCAR)
and always leads to inefficient estimates

I Multiple imputation routines can give unbiased estimates of
parameters of interest assuming data are MAR and will almost
always be more efficient

I Practical advice: if include everything remotely relevant in
chained equations then MAR is much more plausible (similar
to propensity score idea)

I If MNAR, need to run more advanced models as sensitivity
check (Daniels and Hogan, 2008)



And Now for Something Completely Different

I Recent problem reflecting real-world complexity!

I VA data on providers (approximately 10K providers)

I About 15% missing provider gender
I Several potential strategies:

I Gender from name algorithms (e.g. genderize.io) with
external databases

I Same algorithms but in internal database
I Impute using multiple imputation from provider specialty,

patient mix demographics, etc
I Assign some by expert judgement!

I Optimal combination of strategies is not trivial



Summary

I Switching regressions (SR) is incredibly intuitive and flexible
method for generating multiple imputations

I SR is still on somewhat shaky theoretical ground statistically,
but a number of recent papers (e.g. Lee and Carlin, 2010)
have shown it works quite well

I SR is now seamlessly integrated into Stata (mi impute

chained) as of Version 12

I Stata multiple imputation works with nearly every regression
routine and also handles survey weights!



Repeated Measures and Longitudinal Data

I Repeated or longitudinal measurements on subjects very
common in studies

I Can be very useful to address confounding but also adds
complexity to modeling

I Will discuss some commonly used models



Mixed Effects Regression Models

I Make model for average trajectory in time

I Assume each patient has their own patient-specific trajectory
centered around the average trajectory

I Many parametric choices for shape of trajectory (e.g. linear,
polynomial, spline)

I Can also use non-parametric shapes via penalized or
smoothing splines



Average Shape Remarks

I Might focus on average trajectory. The mixed model used to
properly account for intra-patient correlation of longitudinal
data

I Buries under rug the likely inter-patient heterogeneity around
these average trajectories

I Two components of heterogeneity: (i) noisiness of individual
data; (ii) variation of shape in individual trajectories



Subject-Specific Trajectories

I Goal: estimate subject-specific linear trajectories.
I Can use these estimated trajectories for variety of purposes:

I Direct statistically valid inference on subject-specific time
trajectories

I Classify subjects according to characteristics of subject-specific
time trajectories (e.g. increasers vs. decreasers, slow vs. quick
increasers)

I Inference on time to threshold crossing

I More reliant on model being correct



Random Slopes and Intercepts Example
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Cubic Splines Average Trajectory



Cubic Splines Individual Trajectories
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Cubic Spline Trajectory Example



Logarithmic Recovery Example



Discrete Timepoints

I Most longitudinal cohort studies have only a small number of
timepoints that are common to all subjects (e.g. at baseline
and at every 2 years after baseline)

I Rather than looking at baseline as time 0 can look at
post-enrollment event-of-interest times (which are often
obtained continuously) as time 0

I Example: physical functioning before and after hospitalization

I For an event that happens at roughly constant rate,
timepoints will be roughly uniformly distributed



HRS Data Setting

I Nationally representative study of older Americans.

I Bigger sample size but fewer timepoints (less frequent) than
Brown

I Total of 7000 subjects, 5000 hospitalized during study (and
smaller subgroups are of interest)

I Have 5 measurement occasions per subject (every 2 years
vs. every 6 months in Brown)

I How good of a job can we do estimating Brown model with
2-3 before and 2-3 after?

I How can we argue that we have enough power to look at
questions of interest!



Simulated Data

I Use fitted model from Brown to simulate data

I Use sample size and time point frequency from my data
source of interest



Discrete Timepoints of Study
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Hospitalization-Centered Timepoints
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Four parameter model (Single group)

I tij = Time since hospitalization for subject i , occasion
j = 1, 2, 3, 4, 5

I hij = Indicator of post-hospitalization time, i.e. hij ≡ 1tij>0

I rij = Logarithmic time post-hospitalization,
i.e. rij ≡ log(hij tij + 1)

I β1 = Intercept (average score at t = 0)

I β2 = Pre-hospitalization slope

I β3 = Amount score drops at time of hospitalization

I β4 = Recovery slope on logarithmic time scale



Logarithmic recovery model
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Two group logarithmic recovery model
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A few more modeling details

I Random effects for intercept and drop at time of
hospitalization in what I will discuss here

I Have binary covariate indicating type of hospitalization
(surgical vs. non-surgical) distributed roughly 50/50

I Add interactions of intercept, slope, drop, recovery with the
covariate



Fitted Model
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General remarks

I A sample size of 5000 subjects with a 50/50 split of the
hospitalization-type covariate is enough to get extremely
precise estimates of the parameters in the Brown et al. model

I Acceptable precision (i.e. enough power to discern clinically
meaningful differences)



Latent Trajectory Models

I Assume there are a small number (k) of discrete categories of
patients

I Category is unknown (latent) for each patient

I Simultaneously estimate the latent class memberships (get a
probability for each patient belonging to each class) and the k
trajectories

I Has become very popular method in past several years largely
due to SAS Traj procedure (Jones et al., 2001) and recent
NEJM article (Gill et al., 2010)



Latent Trajectory Example 1



Latent Trajectory Discussion

I Visually can be powerful way to display heterogeneity in data

I However, estimated latent trajectories may not be clinically
distinct

I Statistically “optimal” solution masks near-optimality of many
quite different solutions

I Look at Bandeen-Roche plots (next slide) for visual check on
model fit



Latent Trajectory Example 1



Latent Trajectory vs. Mixed Effects

I As mentioned can also use mixed effects to categorize patients
into small number of groups based on the subject-specific
trajectories

I This is fairly common application in practice

I Ignores uncertainty in group membership, however

I Latent class makes this explicit by reporting probabilities of
group membership

I Can get group membership probabilities for mixed effects
approach using Bayesian inference (now available in procs
mixed/mcmc)



References

I Barnes DE, Mehta KM, Boscardin WJ, Fortinsky RH, Palmer RM, Kirby KA,
Landefeld CS (2013). A prognostic index to predict recovery, dependence, or
death in elders who become disabled during hospitalization. J Gen Intern Med,
28:261-268.

I Harrell FE, Lee KL, Mark DB (1996). Tutorial in Biostatistics: Multivariable
prognostic models. Stat Med, 15, 361–387.

I King (2003). Running a best-subsets logistic regression: an alternative to
stepwise methods. Educ Psych Meas, 63, 392–403.

I Mehta KM, Pierluissi E, Boscardin WJ, Kirby K, Walter L, Chren M, Palmer R,
Counsell S, Landefeld CS (2011). A clinical index to stratify hospitalized older
patients according to risk for new-onset disability. J Am Geriatr Soc,
59:1206-1216.

I Miao Y, Cenzer I, Kirby K, Boscardin WJ. (2013) Estimating Harrell?s
Optimism on Predictive Indices Using Bootstrap Samples Proc SAS Global
Forum, 2013:504.

I Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N,
Pencina MJ, Kattan MW (2010). Assessing the performance of prediction
models: a framework for traditional and novel measures. Epidem, 21, 128–138.

I Sullivan LM, Massaro JM, D’Agostino RB (2004), Presentation of multivariate
data for clinical use: The Framingham Study risk score functions. Stat Med,
23,1631?1660.



References (2)

I Carlin JB, Galati JC, Royston P (2008). A new framework for managing and
analyzing multiply imputed data in Stata. Stata Journal 8, 49–67.

I Daniels MJ, Hogan JW (2008). Missing data in longitudinal studies: strategies
for Bayesian modeling and sensitivity analysis. New York: CRC.

I Jones B, Nagin D, Roeder K (2001). A SAS procedure based on mixture models
for estimating developmental trajectories. Sociol Method Res, 29, 374–393.

I Lee KJ and Carlin JB (2010). Multiple imputation for missing data: Fully
conditional specification versus multivariate normal imputation. Am J of Epid,
171, 624–632.

I Li, K.-H. 1988. Imputation using Markov chains. J Stat Comp Simulation.

I Little RJA and Rubin DB (2002). Statistical analysis with missing data, 2nd
ed.. New York: Wiley.

I Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P (2001). A
sequential regression imputation for survey data. Survey Methodology, 27,
85–96.

I Royston P (2004). Multiple imputation of missing values: update. Stata
Journal, 5, 188–201.



References (3)

I Rubin, DB (1976). Inference and Missing Data. Biometrika, 63, 581–592.

I Schafer, JL (1997). Analysis of incomplete multivariate data. New York: CRC.

I Schafer JL, Ezzatti-Rice TM, Johnson W, Khare M, Little RJA, Rubin, DB
(1996). The NHANES III multiple imputation project. ASA Proc of Survey
Research Methods Section, 28–37.

I Schenker N, Raghunathan TE, Chiu PL, Makuc DM, Zhang GY, Cohen AJ
(2006). Multiple imputation of missing income data in the National Health
Interview Survey. J Am Stat Assoc, 101, 924–933.

I van Buuren S, Boshuizen HC, Knook DL (1999). Multiple imputation of missing
blood pressure covariates in survival analysis. Stat Med, 18, 681–694.

I van Buuren S, Brand JPL, Groothuis-Oudshoorn K, Rubin DB (2006). Fully
conditional specification in multivariate imputation. J Stat Comp Sim, 76,
1049–1064.

I van Buuren S (2007). Multiple imputation of discrete and continuous data by
fully conditional specification. Stat Meth Med Res, 16, 219–242.

I White IR, Royston P, Wood AM (2011). Multiple imputation using chained
equations: Issues and guidance for practice. Stat Med, 30, 377-99.


