Observational & Quasi-experimental Research Methods

8th Annual Kathleen Foley Palliative Care Retreat Methods Workshop Park City, Utah, October 20, 2014

Helene Starks, PhD MPH

Associate Professor University of Washington Dept of Bioethics & Humanities; Director, Metrics, Quality & Evaluation Core UW Palliative Care Center of Excellence

Melissa M. Garrido, PhD

Assistant Professor GRECC, James J Peters VAMC, Bronx, NY; Brookdale Department of Geriatrics & Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

Overview of Workshop

- Multivariable modeling vs. propensity scores to control for confounding
- Best practices in modeling
- What propensity scores can & cannot do
- Nuts & bolts of propensity score analysis
- Practice designing an analysis (variable selection, balancing/matching your sample)
- Q & A

Confounding due to Selection Bias in Observational Data

Patients not randomized to treatment

Patient characteristics may be associated with both participation in treatment *and* outcome

Patient Characteristics: Measured (pt, clinician, system factors) & Unmeasured (values, preferences, team/family dynamics)

Tools to Address Confounding

- Matching
- Propensity scores
- Instrumental variables

Best Practices in Modeling: Variable Selection

- Do: Choose variables based on theory
- Do: Exclude variables that are highly correlated with each other
- Don't: Exclude variables via stepwise algorithms (unless building a parsimonious prediction model)
- Don't: Exclude variables based on p-values from bivariate tests

Step-Wise Modeling for Variable Selection

- NOT recommended for *choosing* variables
 Choices should be theory-driven
- Good for *evaluating* which variables and interactions lead to the best predictive model

Tools to Address Confounding due to Selection Bias

• Matching

Compare treated and comparison individuals who are similar on one or two key covariates

Propensity scores

 Compare treated and comparison individuals who have similar "propensities" or likelihoods for receiving treatment, conditional on a set of several covariates

Instrumental variables

 Include an additional variable in your model (the "instrument") that is associated with treatment likelihood but not with outcome

Small Groups

Get in groups of 3 with at least one person who is designing an analysis using propensity scores

Take 5 minutes to:

- Pitch a study to the group & articulate a research question
- Identify the treatment and outcome variables
- Report back to big group

Addressing Selection Bias with Matching

- Goal: Match patients so well that you could imagine that they were "randomly" assigned to each group
- For each patient in the treatment group, find at least one untreated patient from the comparison group who is identical or as similar as possible on all baseline characteristics
- By matching patients at the individual level, the treatment and comparison groups will be matched at the group level

Matching on Specific Variables: Match on gender and age

Isn't There an Easier Way?

Couldn't we match on a single composite score instead?

Propensity Score Matching

What *IS* a propensity score?

- Estimate of the likelihood that any given individual would be in the treatment group, given a set of measured characteristics
- Logistic regression with the treatment group (coded as 0/1) as the dependent variable
- Scores range from 0-1
- Cases matched on proximity of scores to each other

What propensity scores can & cannot do

- Help find matches from comparison group so that measured confounders can be equally distributed between treatment & comparison groups
- Helps improve precision of estimates of treatment effects
- Cannot account for *unmeasured* confounders

 only control for observed variables and only to the extent that they are accurately measured
- Some residual confounding possible

Choosing Variables for Propensity Scores

- Include: Theoretically related to treatment & outcome
- Include: Available & easy/reliable to collect on everyone
- Include: Correlated with unmeasured confounders
- Do not include: Variables hypothesized to be associated with treatment but not with outcome
- Do not include: Variables that may be affected by the treatment
- Do not include: Variables that predict treatment status perfectly

Common Variables in PC

Patient variables

- Demographics (age, gender, ethnicity/race, marital status, insurance status, domicile [home v. LTC/institution])
- Illness-related factors (primary dx, comorbid conditions, severity of illness [APR-DRG])
- Prior utilization (ED visits, hospitalizations, outpt visits, home health/hospice enrollment, days in LTC)

Contextual variables

- Setting (urban/rural, hospice/SNF beds in community, for-profit status, geographic region/zip code, hospital site/type)
- Time (year of death, season of year)
- Clinician characteristics (yrs in practice, specialty, frequency of referral to PC/hospice)

Confounders vs Instrumental Variables

Small Groups

Take 5 minutes to:

- Identify potential confounders to include in your propensity score model
- Discuss theoretical justifications for your choices (i.e., specify how these are related to both treatment and outcome).

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

Calculating a propensity score is an iterative process. Steps 1-5 may be repeated several times.

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

List potential confounders

Evaluate feasibility of including these confounders

Calculate propensity score with logit or probit regression

Working Example

- 2008 Healthcare Cost and Utilization Project (H-CUP) Nationwide Inpatient Sample

 Discharge data for hospitalizations throughout the US
- 12,686 patients with metastatic cancer who died during the hospitalization
- Treatment: Palliative Care Consultation
- Outcome: Average total charges per day
- Contrived example Please do not draw any conclusions from data presented here!

How Many Variables to Include in Propensity Score?

Tradeoff between

 Bias: Distance of estimated treatment effect from true effect

 Efficiency/Variance: Precision of estimated treatment effect

*pscore is not part of Stata's built-in commands. Type "findit pscore" in Stata's
 command line and follow link in pop-up window to install (st0026, Becker
 & Ichino)

Working Example: Propensity Score

Treatment variable

Specify covariates to include in calculation

pscore palliative /// age35to44 age45to54 age55to64 age65to74 age75andup female race_Black /// race_Hispanic race_other race_missing pay_Medicare pay_Medicaid pay_outofpocket /// pay_otherormiss NCHS2 NCHS3 NCHS4 NCHS5 NCHS6 /// lung_ca liver_ca pancreas_ca leukemia stom_ca /// septicemia pneumonia respfailure renalfailure, /// pscore(pc_pscore) blockid(pc_block) detail

Label the estimated propensity score Label the blocks of propensity scores

Algorithm to estimate the propensity score

Beginning of output from pscore command

The treatment is palliative

palliative	Freq.	Percent	Cum.	
0 1	10,861 1,751	86.12 13.88	86.12 100.00	←
Total	12,612	100.00		

Estimation of the propensity score

Iteration	0:	log	likelihood	=	-5080.6799
Iteration	1:	log	likelihood	=	-4839.3575
Iteration	2:	log	likelihood	=	-4836.4592
Iteration	3:	log	likelihood	=	-4836.4577

Probit regression

Log likelihood = -4836.4577

Frequency of treatment in sample

Probit regression to calculate probability of treatment given the covariates

Number of obs = 12612 LR chi2(28) = 488.44 Prob > chi2 = 0.0000 Pseudo R2 = 0.0481

palliative	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age35to44	1966959	.1062481	-1.85	0.064	4049385	.0115466
age45to54	1114731	.0834791	-1.34	0.182	27 50892	.0521429
age55to64	1496492	.0780981	-1.92	0.055	3027187	.0034203
age65to74	0636428	.077005	-0.83	0.409	2145698	.0872842
age75andup	078232	.076199	-1.03	0.305	227 57 93	.0711153
female	.055816	.0288977	1.93	0.053	0008225	.1124545
race_Black	1218066	.0495814	-2.46	0.014	2189843	0246288
race_Hispa~c	0708756	.0667917	-1.06	0.289	201785	.0600337
race_other	.1128539	.0595336	1.90	0.058	0038297	. 2295376
race_missing	2662183	.0414828	-6.42	0.000	347 52 32	1849135
pay_Medicare	193896	.0413946	-4.68	0.000	2750279	1127641
pay_Medicaid	0507248	.056659	-0.90	0.371	1617744	.0603247
pay_outofp~t	.0283215	.0911258	0.31	0.756	1502818	. 2069248
pay_othero~s	.4867789	.0666438	7.30	0.000	. 3561594	.6173984
NCH52	072554	.0407098	-1.78	0.075	1523436	.0072357
NCH53	.1675837	.0417866	4.01	0.000	.0856836	. 2494839
NCH54	.1728791	.0562403	3.07	0.002	.0626502	.283108
NCHS5	.0499702	.0500913	1.00	0.318	048207	.1481474
NCH56	0169394	0596206	0.28	0 776	- 0999148	1337936

Working Example: Propensity Score

The -pscore- command provides you with a single score on which to match your treatment and comparison groups

Description of the estimated propensity score

Estimated propensity score

1%	Percentiles .0330385	Smallest .0158288 .01833		
10%	.0607721	.0188756	obs	12612
25%	.0876162	.0194706	Sum of Wgt.	12612
50%	.1289967	Largest	Mean Std. Dev.	.1388897 .0695261
75%	.1775761	. 501 5948		
90%	. 2239398	. 50889	Variance	.0048339
95%	.2577822	. 5122628	Skewness	1.220613
99%	.3864837	. 5437794	Kurtosis	5.721294

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

Check range of common support Check balance of propensity score Check Range of Common Support Extent to which distributions of propensity scores in treatment and comparison groups overlap

Check Balance of Propensity Score Across Groups

- Does the propensity score have a similar distribution across treatment and comparison groups?
- Estimate distribution by splitting sample by quintiles or other strata of propensity score
- Test whether mean of propensity score is equal in treatment and comparison groups within each quintile
- If not equal, split one or more quintiles into smaller blocks and compare means

Stata Output for Propensity Score Balance (Continuation of -pscore- output, with "detail" option specified)

Distribution of treated and controls across blocks

Blocks of the pscore for treatment	pallia	tive	
palliative	0	1	Total
1 2 3	9,387 1,425 49	1,222 479 50	10,609 1,904 99
Total	10,861	1,751	12,612

Stata stratifies your data based on the propensity score

Tests whether mean propensity score is equal for treated and controls within each block

Test that the mean propensity score is not different for treated and controls

Test in block 1

Observations in block 1 obs: 10609, control: 9387, treated: 1222

Test for block 1

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
0 1	9387 1222	.114782 .131742	.0004566 .0011855	.0442347 .0414404	.113887 .1294162	.1156769 .1340677	Groups are significantly
combined	10609	.1167355	.0004296	.0442526	.1158933	.1175777	different
diff		- .01696	.0013357		0195783	.0143417	
diff = Ho: diff =	= mean(0) - = 0	mean(1)		degrees	t of freedom	= -12.6971 = 10607	
На: d [:] Pr(T < t)	iff < 0) = 0.0000	Pr (Ha: diff != T > t) = (0.0000	Ha: d Pr(T > t	iff > 0) = 1.0000	

Stata Output for Propensity Score Balance (Continuation of -pscore- output, with "detail" option specified)

The mean propensity score is different for treated and controls in block 1 Split the block 1 and retest

Check that blocks have shifted

Blocks of the pscore for treatment palliative	pallia 0	ative 1	Total
1 3 4	9,387 1,425 49	1,222 479 50	10,609 1,904 99
Total	10,861	1,751	12,612

Test in block 1

Observations in block 1 obs: 4041, control: 3740, treated: 301

Test for block 1

Two-sample t test with equal variances

	Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
	0 1	3740 301	.069735 .0757012	.000312 .0009512	.0190816 .0165026	.0691233 .0738293	.0703467 .0775731
con	nbined	4041	.0701794	.0002983	.0189646	.0695945	.0707643
	diff		0059662	.0011325		0081865	0037459
но:	diff = diff =	= mean(0) - = 0	- mean(1)		degree	t s of freedom	= -5.2682 = 4039
Pr	на: di `(T < t)	iff < 0) = 0.0000	Pr(Ha: diff != T > t) =	0.0000	Ha:d Pr(T > t	iff > 0) = 1.0000

Stata splits Block 1 into two blocks and tests whether the propensity score is different for treated and controls in the new Block 1

Groups are still significantly different

Stata will automatically continue to split blocks and perform t-tests until it calculates the smallest # of blocks where the propensity score is equivalent across treated and controls in each block

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

Check Balance of Covariates within Blocks of the Propensity Score

 Ideally, for each unique value of the propensity score, the distribution of X (composite of all covariates) is the same for the treatment and comparison groups

 This is practically impossible, so we check the balance of each observed covariate within blocks of the propensity score

Stata Output for Propensity Score Balance (Continuation of -pscore- output, without "detail" option)

Step 1: Identification of the optimal number of blocks Use option detail if you want more detailed output

The final number of blocks is 9

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

Step 2: Test of balancing property of the propensity score Use option detail if you want more detailed output

Variable NCHS6 is not balanced in block 1

Variable respfailure is not balanced in block 2

Variable NCHS6 is not balanced in block 3

Variable NCH54 is not balanced in block 8

Variable age55to64 is not balanced in block 9

The balancing property is not satisfied

Try a different specification of the propensity score

Inferior of block of pscore	palliat 0	ive 1	Total
0 .05 .075 .1 .175 .175 .2 .3 .4	670 1,437 1,633 3,306 1,283 1,058 1,285 1,285 140 49	27 104 170 460 222 239 389 90 50	697 1,541 1,803 3,766 1,505 1,297 1,674 230 99
Total	10,861	1,751	12,612

Step 2 is completed (propensity score balanced across groups)

 Stata uses t-tests to determine
 whether each covariate is balanced within each block

You will usually get an error message

Stata Output for Propensity Score Balance (Continuation of -pscore- output, with "detail" option)

Testing the balancing property for variable respfailure in block 2

Two-sample t test with equal variances

Variable respfailure is not balanced in block 2

Testing the balancing property for variable renalfailure in block 2

Two-sample t test with equal variances

Interval]	[95% Conf.	Std. Dev.	Std. Err.	Mean	Obs	Group
.6506614 .755801	. 6005564 . 5711221	.4841338 .4748137	.0127714 .0465593	.6256089 .6634615	1437 104	0
. 6523204	. 6040066	.4834519	.0123155	. 6281635	1541	combined
.0584541	1341593		.0490983	0378526		diff
= -0.7710 = 1539	t of freedom	degrees		- mean(1)	= mean(0) = 0	diff : Ho: diff :
iff > 0) = 0.7796	Ha: d Pr(T > t	0 0.4409	Ha: diff != T > t) =	Pr (iff < 0) = 0.2204	Ha: d Pr(T < t)
			red in block	ro is halan	ronalfailu	Variable

Groups are not significantly different on "renalfailure" in Block 2

Improving the Balance of the Propensity Score

- Some imbalance between the groups is usually expected
- Focus on balance of covariates that are more theoretically important
- Consider interactions/correlations between covariates
- Drop 1 or 2 covariates that are less important
- Re-categorize variables
- Include higher order terms or splines of variables
Small Groups

Take 5 minutes to:

 Discuss procedures for deciding which variables you might drop if your pscore doesn't balance

Improving the Balance of the Propensity Score

1. Drop variables created by Stata for initial run of **pscore** command

drop pc_pscore pc_block

- 2. Change covariates
- 3. Re-run -pscore- command

pscore palliative ///
age35to44 age45to54 age55to64 age65to74 age75andup female race_Black ///
race_Hispanic race_other race_missing_pay_Medicare pay_Medicaid pay_outofpocket ///
pay_otherormiss NCHS2 NCHS3 NCHS4 NCHS5_6 ///
lung_ca liver_ca pancreas_ca leukemia stom_ca ///
septicemia pneumonia respfailure renalfailure, ///
pscore(pc_pscore) blockid(pc_block)

sten 1. Tder	tification of t	the ontim	al number of	blocks	
Use option d	letail if you wa	ant more	detailed out	put	1 st try: 4 variables unbalanced in 5
********	*****	******	*********	******	blocks
The final nu	umber of blocks	is 9			DIOCKS
This number	of blocks ensur	ros that	the mean prov	nensity sco	FA
is not diffe	erent for treate	ed and co	ontrols in eac	ch blocks	¹ 2 nd try: 5 variables unbalanced in 4
					blocks
Step 2: Test	of balancing pletail if you wa	property ant more	of the proper detailed out	nsity score	
********	*********	*******	**********	*********	
Variable res	pfailure is not	t balance	d in block 2		
Variable rac	e_Hispanic is I	not balar	nced in block	7	
Variable NCH	154 is not bala	nced in b	olock 8		
Variable age	55to64 is not l	balanced	in block 9		
Variable age	e65to74 is not l	balanced	in block 9		
The balancin	ng property is n	not satis	fied		You will usually get an error message
Try a differ	ent specificat	ion of th	e propensity	score	
Inferior					
of pick	0	ve 1	Total		
0	673	26	699		
.05	1,430	105	1,535		
.1	3,321	463	3,784		
.175	1,042	235	1,277		
.2	1,303 138	393 90	1,696 228		
.4	51	49	100		
Total	10,861	1,751	12,612		

Step 1: Identification of the optimal number of blocks Use option detail if you want more detailed output

The final number of blocks is 9

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

Step 2: Test of balancing property of the propensity score Use option detail if you want more detailed output

Variable NCH52 is not balanced in block 7

Variable NCHS4 is not balanced in block 8

The balancing property is not satisfied

Try a different specification of the propensity score

Inferior of block of pscore	palliat 0	ive 1	Total
0 .05 .075 .1 .15 .2 .25 .3 .4	659 1,417 1,652 3,326 2,298 1,061 272 124 52	27 97 179 460 464 291 103 83 47	686 1,514 1,831 3,786 2,762 1,352 375 207 99
Total	10,861	1,751	12,612

1st try: 4 variables unbalanced in 5 block

2nd try: 5 variables unbalanced in 4 blocks

3rd try: 2 variables unbalanced in 2 blocks

You will usually get an error message

Some imbalance between groups is usually expected

End of the algorithm to estimate the pscore

Assess Balance with Standardized Differences

- Account for means and variances
- Not sensitive to sample size

$$d = \frac{(\bar{x}_{\text{treatment}} - \bar{x}_{\text{control}})}{\sqrt{\frac{s_{\text{treatment}}^2 + s_{\text{control}}^2}{2}}}$$

Continuous variables

nous

$$d = \frac{(\hat{p}_{\text{treatment}} - \hat{p}_{\text{control}})}{\sqrt{\frac{\hat{p}_{\text{treatment}}(1 - \hat{p}_{\text{treatment}}) + \hat{p}_{\text{control}}(1 - \hat{p}_{\text{control}})}{2}}}$$
Dichotomovariables

Balanced Propensity Score

Propensity Score

Balance of Covariates: Caution

 Propensity scores only balance measured confounders

 Balance in measured variables does not indicate balance in unmeasured variables

 Unmeasured confounders will bias treatment effect estimates

Balance of Covariates: Caution

 Do not use c-statistics, area under the curve, or any other model fit statistics to measure propensity score performance

They do not measure reduction in confounding

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

Matching and Weighting Strategies

Quality **Quantity**

Nearest Neighbor Radius Matching Kernel Weighting Inverse Probability of Treatment Weighting

No universal "best" strategy

Choices When Matching Sample by Propensity Score

- How close of a match is acceptable?
- Should every treated individual have one or many matches in the comparison group?
- Should treated individuals be matched with or without replacement?
- Should matching be greedy or optimal?

Which Strategy to Choose?

No best method

 Without examining outcome, evaluate covariate balance in several strategies (our next step – Step 5)

 Choose the method that has the best balance and still meets the analytic goal

Matching Strategy: Nearest Neighbor

- List the treated patients
- Identify comparison patient with closest propensity score
- Continue until all treated are matched; delete unused comparison patients
- Advantage
 - All treated patients are included in the new sample
- Disadvantage
 - Lose information from unmatched individuals in comparison group (more variance)
 - For some treated patients, the nearest match in the comparison group may have a very different propensity score (increases bias)

Matching Strategy: Radius Matching

- Define a "caliper" or maximum permissible difference that defines a match within a range of the propensity score
- .2 * standard deviation of logit of propensity score is often used gen logitpscore = ln(mypscore/(1-mypscore)) sum logitpscore
- Individuals from both treatment and comparison groups are dropped from sample if no within-caliper match is found
- Advantage: Improving comparability of groups \rightarrow less bias
- Disadvantage: Losing information from some observations → more variance

Matching vs Weighting

 Matching strategies reduce bias at the expense of sample size, increasing variance of treatment effect estimates

 Weighting allows you to keep the bulk of your sample while reducing bias by giving more weight to individuals with closer propensity scores

Weighting Strategy: Kernel Weighting

- Each treated individual is assigned a weight of 1
- For each treated individual, a composite of information from comparison individuals within a certain bandwidth is used
- Comparison individuals weighted by distance of propensity score from treated individual's propensity score (higher weights for better matches)
- Weight assigned by a nonparametric kernel function
- Leads to average treatment effect on *treated*

Weighting Strategy: Inverse Probability of Treatment Weighting (IPTW)

- Each treated individual receives a weight of 1/propensity score
- Each comparison individual receives a weight of 1/ (1-propensity score)
- Weights should be normalized to one
- Leads to average treatment effect for *sample*

Matching Example

- Specific Aim: Determine the impact of a palliative care consult on average hospital expenditures
- Matching Strategy:
 - 1:1 matching
 - With replacement
 - Caliper = 0.2* standard deviation of logit of propensity score

Stata Code to Weight Sample on Propensity Score

Kernel Weight:

qui psmatch2 treatment, kernel outcome(outcomevar)
 pscore(pc_pscore)

Normalize weights to sum to one

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score

Perform multiple checks

Several Ways to Evaluate Balance in Sample Matched or Weighted by Propensity Score

- Standardized differences
- Graphs
 - Quantile-quantile plots
 - Plots of covariates in treated and comparison groups
- Ratios of variance

Evaluate standardized differences in matched sample

Immediately following -psmatch2-, run: Treatment variable pstest covariate1..covariate#, treated(treatment) both show balance before and after match (default is to only show after)

pstest age female race_Black ///
race_Hispanic race_other race_missing pay_Medicare pay_Medicaid pay_outofpocket ///
pay_otherormiss NCHS2 NCHS3 NCHS4 NCHS5_6 ///
lung_ca liver_ca pancreas_ca leukemia stom_ca ///
septicemia pneumonia respfailure renalfailure, treated(palliative) both

Variable	Unmatched Matched	Mean Treated Control	%reduct %bias bias	t-test t p> t
age	Unmatched Matched	67.00767.57267.07467.025	4.2 0.4 91.2	-1.66 0.097 0.10 0.917
female	Unmatched Matched	.49343 .46828 .49365 .48602	5.0 1.5 69.7	1.96 0.050 0.43 0.669

Output from -pstest-

	Summary of	the distribut	ion of the abs(b	ias)
		BEFORE MAT	CHING	
	Percentiles	Smallest		
1%	.4647914	.4647914		
5%	1.525013	1.525013	-	
10%	1./6495	1./6495	ODS	23
20%	2.440080	2.2149/	sum or wgt.	23
50%	5,245142		Mean	10.00157
		Largest	Std. Dev.	9.429134
7 5%	17.56547	24.66997		
90%	25.51863	25.51863	Variance	88.90857
95%	25.5416	25.5416	Skewness	. 9390208
99%	31.01482	31.01482	Kurtosis	2.455434
		AFTER MATC	HING	
1.0/	Percentiles	Smallest		
1%	0	0		
1.0%	22800	22800	obs	23
25%	6399435	370463	Sum of Wat	23
		. 5/ 0105	Sum of Age.	23
50%	1.423716		Mean	1.575237
		Largest	Std. Dev.	1.141444
75%	2.5283	2.865676		
90%	3.245421	3.245421	Variance	1.302894
95%	3.478944	3.478944	Skewness	. 3601008
99%	3.72565	3.72565	Kurtosis	1.953917
Samp	ole Pseudo R2	LR chi2	p>chi2 Mean	oias medsi
Raw	0.048	482.73	0.000 10	.0 5.2
M - +	-bod 0 002	7 12		6 14

Summary of covariate imbalance

Summary of mean and median bias before and after matching

Visual inspection of standardized differences

pstest covariate1..covariate#, treated(treatment) both hist

Optional command to get histogram of covariate balance

Visual inspection of standardized differences

pstest covariate1..covariate#, treated(treatment) both graph

Evaluate standardized differences in weighted sample

 Kernel: Uses -psmatch2- so can use same procedure as for matched samples

• IPTW:

After running **-dr**- and normalizing weight variable, run:

pbalchk treatment covariate1... covariate#,
wt(norm weights)

Name of weight variable created earlier

Output from -pbalchk-

	Mean in treated	Mean in Untreated	Standardised diff.
age	67.47	67.52	-0.003
female	0.48	0.47	0.008
race Black	0.11	0.11	0.011
ace Hispa~c	0.05	0.05	-0.006
race other	0.06	0.06	-0.002
ace_missing	0.17	0.18	-0.007
ay Medicare	0.58	0.58	0.001
ay_Medicaid	0.09	0.09	0.005
ay_outofp~t	0.03	0.02	0.014
ay_othero~s	0.04	0.04	-0.009
NCH52	0.21	0.23	-0.033
NCHS3	0.17	0.17	-0.006
NCHS4	0.08	0.08	0.021
NCHS5_6	0.20	0.18	0.047
lung_ca	0.30	0.29	0.016
liver_ca	0.02	0.02	0.020
pancreas ca	0.05	0.05	0.001
leukemia_ca	0.01	0.01	-0.009
stom_ca	0.03	0.02	0.025
	0.34	0.34	-0.015
pneumonia	0.34	0.32	0.023
respfailure	0.45	0.46	-0.013
enalfailure	0.32	0.32	-0.009

Same information as %bias in -pstestoutput, but not expressed as a percentage

Quantile-Quantile Plots

- For unweighted continuous variables
- Plot covariate in treated group against covariate in comparison group (will need to create 2 new variables)

in a one-to-one nearest neighbor match

Output from -qqplot-

If points lie along 45 degree, covariate is balanced

Plots of Covariates in Treated and Comparison Groups

- For weighted continuous variables
- Plot density of covariate in treated group against density of covariate in comparison group
- Subjective comparison

twoway kdensity covariate if treatment
 [aweight= norm_weights] || kdensity
 covariate if !treatment [aweight=
 norm_weights]

Example of Density Plot

Evaluate Ratio of Variances

 Ratio of variance of covariate in treated group to variance of covariate in comparison group should be near one if covariate is balanced

• Rubin: "1/2 or 2 are far too extreme"

 Compare ratio before and after matching or weighting sample by propensity score

Compare Results of Balance Tests

 If multiple tests indicate balance, there is a greater likelihood that covariates are balanced across treatment and comparison groups in the propensity score matched or weighted sample

General Procedure

Step 1: Choose variables to include in propensity score

Step 2: Ensure that propensity score is balanced across treatment and comparison groups

Step 3: Ensure that covariates are balanced across treatment and comparison groups within blocks of the propensity score

Step 4: Choose a matching or weighting strategy

Step 5: Ensure that covariates are balanced across treatment and comparison groups in sample matched or weighted by propensity score

Step 6: Proceed with analyses based on sample matched or weighted by propensity score Analysis of Data Matched or Weighted by Propensity Score

- Delete observations from individuals not within the range of common support
- Choose the treatment effect of interest
- Calculate correct standard error for propensity score matched or weighted sample
- Guard against misspecification of the propensity score
Delete Individuals Outside of the Range of Common Support

psmatch2: Treatment assignment	psmatch2: Common support On suppor	Total
Untreated Treated	10,070 1,574	10,070 1,574
Total	11,644	11,644

Nearest neighbor

No unmatched individuals

psmatch2: Treatment assignment	psmatch2: Commo support Off suppo On sup	on opor Total
Untreated Treated		,070 10,070 ,468 1,574
Total	106 11	,538 11,644

106 treated individuals will be deleted

Delete Individuals Outside of the Range of Common Support After -psmatch2-, can run: psgraph, pscore (pc pscore)

to visualize distribution of individuals who will be deleted

Treatment Effects

• ATT: Average Treatment Effect on the Treated

- ATE: Average Treatment Effect for sample within range of common support
 - Incorporates ATT and average treatment effect on untreated

Need to Correct Standard Errors for Treatment Effect Estimates

- Uncertainty from propensity score estimate influences uncertainty of treatment effect estimate
- Ignoring uncertainty
 - Makes standard errors for ATEs more conservative (might conclude that there was no evidence of a significant treatment effect when there was)
 - Can make standard errors for ATTs more conservative or more generous

How to Correct Standard Errors

Do nothing

 If propensity score and treatment effect are estimated simultaneously, no need for further correction

Bootstrap

 When propensity score created in a separate step from treatment effect estimate and sample is weighted by propensity score

Abadie-Imbens method

 When propensity score created in a separate step from treatment effect estimate and sample is *matched* by propensity score

Guarding Against Misspecification of the Propensity Score

- "Doubly-robust" estimation
- Perform multivariable regression analysis on a sample matched or weighted by the propensity score
- As long as *either* the propensity score *or* the regression model is specified correctly, the treatment effect estimates will not be biased

Be careful when interpreting results of a propensity score analysis

Generalizability

- Excluded individuals differ from those within the range of common support
- Treated and comparison individuals with missing values for any variables used in the propensity score are usually deleted
- Meaning of other coefficients in the model

 Would need to create a new propensity score to test
 other interventions in the dataset

Treatment Effects with and without Propensity Scores

Analytic Approach	Adjustment for Selection Bias	Adjustment for Other Covariates	Sample Size	ATT
Regression of costs on outcome in original sample	No	No	1751	- \$2,014
Regression of costs on outcome and control variables in original sample	No	Yes	1751	- \$1,230
Propensity score matched sample, single method (ATT from -psmatch2- or -teffects-)	Yes	Yes	1468	-\$937
Propensity score matched sample, doubly robust method (regression of costs on outcome and covariates within sample matched by propensity score)	Yes	Yes	1468	-\$861

Controlling for Confounding

	Strengths	Limitations
Multivariable modeling	 Most commonly used approach People are familiar with techniques & assumptions Produces specific &-coefficients for each individual confounder Allows examination of these specific contributions to the outcome 	 Requires parsimony to conserve degrees of freedom Cannot detect group differences in distributions of measured confounders Model assumptions may not fit the data Only adjusts for measured confounders
Propensity scores	 Good for small data sets – summarizes set of confounders into a single measure; parsimony less of an issue Distributions of confounders are similar between groups Shows group differences Allows for closer examination across strata 	 Confounders balanced at group level – 2 people with the same score may not share the same characteristics Balancing all the variables across strata can be hard to achieve Only adjusts for measured confounders

Other Issues in Propensity Score Analysis

Multi-valued and continuous treatments

Residual confounding

• Power analysis

Multi-Valued Categorical Treatment

- Example: Effect of discharge status (home with no services, home with home health aide, postacute care facility) on hospital readmissions
- Matching is not practical
- In Stata 13, can calculate the effect of a multivalued categorical treatment on an outcome with the -teffects- package through IPTW

Treatment Effects for Multi-Valued Categorical Treatments

Average Treatment Effect on the Treated E{(y_{treatmentA} - y_{treatment0}) | t=treatmentB}

- Mean difference in treatment effects between treatment of interest (treatment A) and comparison/baseline treatment (treatment 0), given that individual received a certain level of treatment (treatment B)
- Treatment A and B can refer to the same treatment group

Treatment Effects for Multi-Valued Categorical Treatments Average Treatment Effect on the Treated E{(y_{post-acute care} - y_{home with no services}) | t=post-acute care}

Mean difference in treatment effects between treatment of interest (post-acute care) and comparison/baseline treatment (home with no services), given that individual received a certain level of treatment (post-acute care) Stata Code for Multi-Valued Categorical Treatment

teffects ipwra (outcome covariate1...

covariate#) (treatment covariate1...

covariate#), Baseline Default is ATE atet control(treatmentlevel0)

tlevel (treatmentlevelB)

"Treated" group forwhom you want ATT

Continuous Treatment Generalized Propensity Score (GPS)

doseresponse covariate1... covariate#,

outcome (outcomevar) **t** (treatmentvar) Creates propensity score **gpscore**(newpscorevar) **predict**(hat treat) Variable that splits treatment into intervals sigma(hat sd) cutpoints(cut) index(mean) Number of quantiles of GPS nq gps(#) dose response(newdoseresponsevar) test(Bayes factor) detail Alternative to t-test for balance diagnostics

Sensitivity Analyses for Residual (Unobserved) Confounding

	Rosenbaum	VanderWeele and Arah
Study Design	For 1:1 matched samples only	Any
Sensitive to sample size?	Yes	No
Information supplied by researcher	Relationship between outcome (y) and confounder (u)	Relationship between y and u Prevalence of u when d = 0
	Relationship between treatment (d) and u	Prevalence of u when d = 1
Result	Strength of relationships among y , u , and d needed to make treatment effect estimate no longer significant	Treatment effect estimate is adjusted for u

Adapted from Liu et al 2013. Prevention Science 14: 570-580

Power Analyses for Propensity Scores

Traditional Power Analysis:

Estimate power to detect an increase in % of patients with a goals of care conversation after a PC intervention

- Hypothesized change from 50% to 70% of patients
- n (Treatment group) fixed at 75 patients

Usually, power increases with sample size

- Power when n(control group) is 75 = .71
- Power when n(control group) is 150 = .83

Power Analyses for Propensity Scores

Traditional power analysis does not account for:

- Precision of matches when multiple comparison group individuals are matched to one treated individual
- Dependence of observations
- Propensity score's reduction of variation from observed confounders
- Unequal contribution of observations to analysis if using propensity score weights

One solution: Power calculation via simulation

References

- Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples Statistics in Medicine 2009;28: 3083-3107.
- Garrido MM. Propensity scores: A practical method for assessing treatment effects in pain and symptom management research. JPSM. 2014; 48(4): 711-718.
- Garrido MM, Kelley AS, Paris J, Roza K, Meier DE, Morrison RS, Aldridge MD. Methods for constructing and assessing propensity scores. Health Services Research. 2014; 49(5): 1701-1720.
- Liu W, Kuramoto SJ, Stuart EA. An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research. Prev Sci. 2013 Dec;14(6):570-80.
- Rubin DB. Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services & Outcomes Research Methodology 2001; 2(3-4): 169-188
- Starks H, Diehr P, Curtis JR. The challenge of selection bias and confounding in palliative care research. J Palliat Med. 2009 Feb;12(2):181-7.

Acknowledgements

- NPCRC Career Development Award, 2007-2010 (Starks)
- VA HSR&D (CDA 11-201, CDP 12-255) (Garrido)
- PC4C Study Group (NCI/NINR 5R01CA116227, National Palliative Care Research Center)
- Diane Meier, R. Sean Morrison, Melissa Aldridge, Amy Kelley, Julia Paris, Katherine Roza
- Icahn School of Medicine at Mount Sinai Claude D. Pepper Older Americans Independence Center (NIH/NIA P30 AG028741-01A2)

The views expressed in this presentation are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government.

Questions?

xkcd.com

melissa.garrido@mssm.edu tigiba@u.washington.edu